แสดงทั้งหมดจากล่าสุด

1.
วิวินาวิ ฮาวาย
二重国籍者の米国への渡航・出国入国について(101view/2res)
ปัญหา / ปรึกษาหารือ วันนี้ 15:14
2.
วิวินาวิ ลอสแอนเจลิส
ロサンゼルスで日本語で学べる料理教室について(78view/5res)
คำถาม / สอบถาม วันนี้ 12:44
3.
วิวินาวิ ลอสแอนเจลิส
ナルシシスト/アスペルガーのパートナーの精神的虐待(84view/4res)
ปัญหา / ปรึกษาหารือ วันนี้ 12:14
4.
วิวินาวิ ลอสแอนเจลิส
独り言Plus(435kview/3968res)
สนทนาฟรี วันนี้ 10:29
5.
วิวินาวิ ฮาวาย
日本とハワイ比較(1kview/6res)
ความเป็นอยู่ เมื่อวานนี้ 14:58
6.
วิวินาวิ ลอสแอนเจลิส
これは詐欺メールでしょうか・・・・(476view/16res)
คำถาม / สอบถาม 2025/01/05 19:19
7.
วิวินาวิ ลอสแอนเจลิส
携帯会社(2kview/14res)
สนทนาฟรี 2025/01/05 18:57
8.
วิวินาวิ ลอสแอนเจลิส
まさかトランプが勝つとは思わなかった。(5kview/142res)
สนทนาฟรี 2025/01/05 10:19
9.
วิวินาวิ ลอสแอนเจลิส
語学学校(429view/10res)
ปัญหา / ปรึกษาหารือ 2025/01/05 07:53
10.
วิวินาวิ ลอสแอนเจลิส
ロサンゼルスでの御神籤について質問(107view/3res)
คำถาม / สอบถาม 2025/01/04 12:03
หัวข้อประเด็น (Topic)

วิวินาวิ ลอสแอนเจลิส
is there somebody good at math? no,2

สนทนาฟรี
#1
  • frank
  • 2004/05/24 16:41

problem 2 A

find an equation tangent to the curve y=e^x that is parralel to the line x-4y=1

problem 2 B

find an equation of the tangent to the curve y=e^x that passes through the origin.

#21

良く見たら#20で載せた式はxとyの展開式をコピペで作っているうちに間違っていましたので修正(^^;

x=a*cos^3(t)
y=a*sin^3(t)
0<=t<=2pi
x^2/3 + y^2/3 = (a^2/3)*cos^2(t) + (a^2/3)*sin^2(t)=a^2/3
として媒介変数表示(parameterize)すれば変数がt一つにまとまるので微分が楽。
それぞれtについて微分すると
dx/dt= -3a*cos^2(t)*sin(t)
dy/dt= 3a*sin^2(t)*cos(t)
dy/dx= -1/tan(t)

あるtにおける接線の方程式は
dx/dt*(x-x(t))-dy/dt*(y-y(t))=0
展開すると
dx/dt*(x-a*cos^3(t))-dy/dt*(y-a*sin^3(t))=0
(x-a*cos^3(t))+(1/tan(t))*(y-a*sin^3(t))=0

y軸と交わる点はx=0を代入して
-a*cos^3(t)+(1/tan(t))*(y-a*sin^3(t))=0
yについて整理すると
y=a*sin(t)
同様にx軸と交わる点はy=0を代入して
(x-a*cos^3(t))+(1/tan(t))*(-a*sin^3(t))=0
xについて整理すると
x=a*cos(t)
よって線分の長さlは
l=sqrt(x^2+y^2)=sqrt(a^2*cos^2(t)+a^2sin^2(t))
l=a
変数tは消去され、定数項aだけが残った。よって線分の長さは
常に一定である。

#22

どうでもいいけど、なんかSedさんカッコいいです!

#23

sedサン、とても助かりました。ありがとうございました。

#24

の式で表してから微分した方が楽では?(もっとエレガントなやり方あるかもしれんけど)

Astroidをparametric equation で表せば:

x=a cos^3(t)
y=a sin^3(t)
where a is constant

これにtangentな直線の傾きは(by chain rule):

dy/dx=dy/dt times dt/dx = (3asin^2(t)cos(t))/(-3acos^2(t)sin(t))=-tan(t)

よってこの直線の式は
y=-tan(t)x+b
a sin^3(t)=-tan(t)acos^3(t)+b

--> b=a sin(t)[sin^2(t)+cos^2(t)]=asin(t)

Therefore, y=-tan(t)x+asint(t)

この直線がcordinate axes (x and y)をcut-off する点は

@ x=0, y=a sin(t)
@ y=0, x=a cos(t)

よってこの直線の座標軸を通る(なおかつastroidにtangentearu)部分の長さは

L=sqrt(x^2+y^2)=sqrt(a^2cos^2(t)+a^2sin^2(t))=sqrt(a^2)=a

とconstantになる。

なんか日本語と英語混ぜると変な感じ。数学の問題解く時は英語で考える方が好きです(個人的には)。

#25

修正した#21も間違っていて済みませんfrankさんもう宿題提出しちゃったかな?(^^;

#24にあるようにdy/dx=-tan(t)が正しいですね。

สิ้นสุดระยะเวลาสำหรับการเขียนลงเว็บ สำหรับ“ is there somebody good at math? no,2 ” 
ในกรณีที่ต้องการทำหัวข้อเดียวกันต่อไป กรุณาสร้างหัวข้อใหม่